Let’s solve this step by step:
First equation:
Shoes+Shoes+Shoes=30\text{Shoes} + \text{Shoes} + \text{Shoes} = 30
This implies each pair of shoes is 1010:
10+10+10=3010 + 10 + 10 = 30
Second equation:
Boy+Boy+Shoes=20\text{Boy} + \text{Boy} + \text{Shoes} = 20
Since the shoes are 1010, we have:
2Ă—Boy+10=202 \times \text{Boy} + 10 = 20
Solving for the boy:
2×Boy=10⇒Boy=52 \times \text{Boy} = 10 \Rightarrow \text{Boy} = 5
Third equation:
Burger+Burger+Boy=13\text{Burger} + \text{Burger} + \text{Boy} = 13
We know the boy is 55, so:
2Ă—Burger+5=132 \times \text{Burger} + 5 = 13
Solving for the burger:
2×Burger=8⇒Burger=42 \times \text{Burger} = 8 \Rightarrow \text{Burger} = 4
Final equation:
Shoe+(Boy with two small burgers)×Burger=?\text{Shoe} + (\text{Boy with two small burgers}) \times \text{Burger} = ? A single shoe is half of a pair, so it’s 55. The boy with two small burgers should represent 5+2=75 + 2 = 7. The burger is 44.
Now, substitute into the equation:
5+(7Ă—4)=5+28=335 + (7 \times 4) = 5 + 28 = 33
Answer: 33